Two-dimensional array self-assembled quantum dot sub-diffraction waveguides with low loss and low crosstalk.

نویسندگان

  • Chia-Jean Wang
  • Babak A Parviz
  • Lih Y Lin
چکیده

We model and demonstrate the behavior of two-dimensional (2D) self-assembled quantum dot (QD) sub-diffraction waveguides. By pumping the gain-enabled semiconductor nanoparticles and introducing a signal light, energy coupling of stimulated photons from the QDs enables light transmission along the waveguide. Monte Carlo simulation with randomized inter-dot separation reveals that the optical gain necessary for unity transfer is 3.1 × 10(7) m(-1) for a 2D (2 µm length by 500 nm width) array compared to 11.6 × 10(7) m(-1) for a 1D (2 µm length) given 8 nm diameter quantum dots. The theoretical results are borne out in experiments on 2D arrays by measurement of negligible crosstalk component with as little as 200 nm waveguide separation and is indicative of near-field optical coupling behavior. The transmission loss for 500 nm wide structures is determined to be close to 3 dB/4 µm, whereas that for 100 nm width is 3 dB/2.3 µm. Accordingly, higher pump power and gain would be necessary on the narrower device to create similar throughput. Considering existing nanoscale propagation methods, which commonly use negative dielectric materials, our waveguide shows an improved loss characteristic with comparable or smaller dimensions. Thus, the application of QDs to nanophotonic waveguiding represents a promising path towards ultra-high density photonic integrated circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanophotonic Waveguides by Self-Assembled Quantum Dots

In order to construct ultra-high density photonic integrated circuits, innovative techniques are required to circumvent the fundamental restriction set by Heisenberg’s Uncertainty Principle and the resulting diffraction limit. Traditionally, waveguides adhere to a lower bound in size roughly equal to the propagating wavelength to allow for energy confinement and minimal crosstalk. However, prog...

متن کامل

Quantum dot nanophotonics – from waveguiding to integration

Due to its unique optoelectronic properties, the quantum dot (QD) has become a promising material for realizing photonic components and devices with high quantum efficiencies. Quantum dots in colloidal form can have their surfaces modified with various molecules, which enables new fabrication process utilizing molecular self-assembly and can result in new QD photonic device structures in nano-s...

متن کامل

Anisotropic Confinement, Electronic Coupling and Strain Induced Effects Detected by Valence-Band Anisotropy in Self-Assembled Quantum Dots

A method to determine the effects of the geometry and lateral ordering on the electronic properties of an array of one-dimensional self-assembled quantum dots is discussed. A model that takes into account the valence-band anisotropic effective masses and strain effects must be used to describe the behavior of the photoluminescence emission, proposed as a clean tool for the characterization of d...

متن کامل

Coupling of guided Surface Plasmon Polaritons to proximal self-assembled InGaAs Quantum Dots

We present investigations of the propagation length of guided surface plasmon polaritons along Au waveguides on GaAs and their coupling to near surface InGaAs self-assembled quantum dots. Our results reveal surface plasmon propagation lengths ranging from 13.4 ± 1.7 μm to 27.5 ± 1.5 μm as the width of the waveguide increases from 2-5 μm. Experiments performed on active structures containing nea...

متن کامل

Gain optimization of the optical waveguide based on the quantum box core/shell structure

In order to implement an integrated optical quantum circuit, designing waveguides based on the quantum box is of prime importance. To do this we have investigated optical waveguide both with and without optical pumping. The rate of absorption and emission using an array of AlGaAs/GaAs quantum box core/shell structure in the optical waveguide with various pumping intensities has computed. By con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 19 29  شماره 

صفحات  -

تاریخ انتشار 2008